

PII: S0040-4039(96)00983-5

A Convenient One-Pot Preparation of Bicyclic 2-Pyridones from Acyl Isocyanates Utilizing Trimethylsilylketene

Kiyo Takaoka, Toyohiko Aoyama,* and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University
Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Abstract — 4-Trimethylsiloxy-1,3-oxazin-6-ones, easily generated in situ from trimethylsilylketene and acyl isocyanates, smoothly react with the enamines of cycloalkanones to give bicyclic 2-pyridones. Copyright © 1996 Elsevier Science Ltd

In the preceding communication, ¹ we reported that the reaction of trimethylsilylketene (TMSCH=C=O) with acyl isocyanates, followed by treatment with electron-deficient acetylenes gave 2-pyridones in good yield. As an extension of this work, we now report the convenient one-pot preparation of bicyclic 2-pyridones utilizing TMSCH=C=O.

We have found that 4-trimethylsiloxy-1,3-oxazin-6-ones 2,1 easily generated in situ from TMSCH=C=O and acyl isocyanates 1, smoothly undergo the Diels-Alder reaction with the enamines of cycloalkanones to give bicyclic 2-pyridones 4~6, as shown in Scheme 1.

 $\boldsymbol{a}: Ph,\, \boldsymbol{b}: 4\text{-NO}_2C_6H_4,\, \boldsymbol{c}: 4\text{-MeOC}_6H_4,$

d: 2-Furyl, e: PhCH2CH2

A typical experimental procedure is as follows: A mixture of 1a (149 mg, 1 mmol) and TMSCH=C=O (147 mg, 1.3 mmol) in o-dichlorobenzene (3 ml) was heated at 90°C for 3 h under argon. 1-Piperidinocyclohexene (236 mg, 1.4 mmol) was then added and the mixture was stirred at reflux for 2 h. After concentration *in vacuo*, the residue was purified by column chromatography on silica gel (BW-200, Fuji Davison, hexane:AcOEt:MeOH=16:48:3) to give 5a (143 mg, 63%).

The results are summarized in the Table. Various 1,3-oxazin-6-ones 2 derived from aromatic and heteroaromatic acyl isocyanates smoothly reacted with the piperidine enamines of cyclopentanone, cyclohexanone, and cycloheptanone to give the corresponding bicyclic 2-pyridones. In contrast to the results, the thermolysis of the Diels-Alder adduct derived from 2-trifluoromethyl-4-methyl-1,3-oxazin-6-one and 1-piperidinocyclohexene have been reported to give the amide, 1-(3-trifluoroacetylaminocrotonoyl)piperidine, resulting from the retro-Diels-Alder fission of the adduct and no tetrahydroisoquinoline derivative is formed. Aliphatic acyl isocyanate such as 3-phenylpropionyl isocyanate (1e) also underwent the reaction with 1-piperidinocyclopentene to give 4e in good yield, but cyclohexylcarbonylisocyanate was completely inert. o-Dichlorobenzene seems to be the solvent of choice. The morpholino and pyrrolidino enamines could also be used though the yield slightly decreased.

Thus, the present method using TMSCH=C=O makes possible the one-pot conversion of acyl isocyanates to bicyclic 2-pyridones and will provide a convenient methodology for the bicyclic pyridone synthesis.

Table.^a Preparation of Bicyclic 2-Pyridones (4~6)

Compd.			Yield	IR (nujol)	¹ H NMR(CDCl ₃)	mpb,c
No.	R	n	(%)	cm ⁻¹ , NHC=O	ppm, C(3)-H	(°C)
4a	Ph	1	77	1651	6.42 (s)	218-220
5a		2	63	1651	6.32 (s)	243
6a		3	61	1659	6.36 (s)	212-213
4 b	4-NO2C6H4	1	96	1647	6.49 (s)	>255
5 b		2	45	1657	6.35 (s)	>280
6b		3	55	1657	6.34 (s)	215-218
4 c	4-MeOC6H4	1	69	1657	6.38 (s)	223-235
5 c		2	32	1647	6.30 (s)	227-228
6 c		3	58	1655	6.33 (s)	237-238
4 d	2-Furyl	1	88	1647	6.36 (s)	224
5 d		2	75	1686	6.29 (s)	177-178
6 d		3	81	1646	6.33 (s)	177-179
4 e	PhCH ₂ CH ₂	1	70	1655	6.30 (s)	191-193

a) All compounds gave satisfactory elemental analysis. b) Recrystallized from tetrahydrofuran-hexane.

References and Notes

- 1. Takaoka, K.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. preceding paper.
- 2. Steglich, W.; Jeschke, R.; Buschmann, E. Gazz. Chim. Ital. 1986, 116, 361-372.

c) Melting points were measured on a hot-plate.